The linear regression algorithm.
More...
#include <bayeux/mygsl/linear_regression.h>
|
bool | is_initialized () const |
| Check initialization flag. More...
|
|
bool | can_weighted () const |
| Check if a weighted fit can pe performed. More...
|
|
const fit_data & | get_fit_data () const |
| Return the result of the fit. More...
|
|
| linear_regression () |
| Default constructor. More...
|
|
| linear_regression (const std::vector< datapoint > &p_) |
| Construct from an array of datapoints (x,y,w) triplets. More...
|
|
| linear_regression (size_t npoints_, const double *x_, const double *y_, const double *w_=0) |
| Construct from plain arrays of x, y and w values. More...
|
|
| linear_regression (const std::vector< double > &x_, const std::vector< double > &y_, const std::vector< double > &w_) |
| Construct from vectors of x, y and w values. More...
|
|
| linear_regression (const std::vector< double > &x_, const std::vector< double > &y_) |
| Construct from vectors of x and y values (no weights) More...
|
|
virtual | ~linear_regression () |
| Destructor. More...
|
|
void | init (const std::vector< datapoint > &p_) |
| Initialize from an array of datapoints (x,y,w) triplets. More...
|
|
void | init (size_t npoints_, const double *x_, const double *y_, const double *w_=0) |
| Initialize from plain arrays of x, y and optional w values. More...
|
|
void | init (const std::vector< double > &x_, const std::vector< double > &y_, const std::vector< double > &w_) |
| Initialize from vectors of x, y and w values. More...
|
|
void | init (const std::vector< double > &x_, const std::vector< double > &y_) |
| Construct from vectors of x and y values (no weights) More...
|
|
void | reset () |
| Reset. More...
|
|
bool | fit_linear () |
| Perform the linear unweighted fit. More...
|
|
bool | fit_weighted_linear () |
| Perform the linear weighted fit. More...
|
|
bool | fit_linear_no_constant () |
| Perform the linear unweighted fit without constant parameter. More...
|
|
bool | fit_weighted_linear_no_constant () |
| Perform the linear weighted fit without constant parameter. More...
|
|
The linear regression algorithm.
◆ linear_regression() [1/5]
mygsl::linear_regression::linear_regression |
( |
| ) |
|
◆ linear_regression() [2/5]
mygsl::linear_regression::linear_regression |
( |
const std::vector< datapoint > & |
p_ | ) |
|
Construct from an array of datapoints (x,y,w) triplets.
◆ linear_regression() [3/5]
mygsl::linear_regression::linear_regression |
( |
size_t |
npoints_, |
|
|
const double * |
x_, |
|
|
const double * |
y_, |
|
|
const double * |
w_ = 0 |
|
) |
| |
Construct from plain arrays of x, y and w values.
◆ linear_regression() [4/5]
mygsl::linear_regression::linear_regression |
( |
const std::vector< double > & |
x_, |
|
|
const std::vector< double > & |
y_, |
|
|
const std::vector< double > & |
w_ |
|
) |
| |
Construct from vectors of x, y and w values.
◆ linear_regression() [5/5]
mygsl::linear_regression::linear_regression |
( |
const std::vector< double > & |
x_, |
|
|
const std::vector< double > & |
y_ |
|
) |
| |
Construct from vectors of x and y values (no weights)
◆ ~linear_regression()
virtual mygsl::linear_regression::~linear_regression |
( |
| ) |
|
|
virtual |
◆ can_weighted()
bool mygsl::linear_regression::can_weighted |
( |
| ) |
const |
Check if a weighted fit can pe performed.
◆ fit_linear()
bool mygsl::linear_regression::fit_linear |
( |
| ) |
|
Perform the linear unweighted fit.
◆ fit_linear_no_constant()
bool mygsl::linear_regression::fit_linear_no_constant |
( |
| ) |
|
Perform the linear unweighted fit without constant parameter.
◆ fit_weighted_linear()
bool mygsl::linear_regression::fit_weighted_linear |
( |
| ) |
|
Perform the linear weighted fit.
◆ fit_weighted_linear_no_constant()
bool mygsl::linear_regression::fit_weighted_linear_no_constant |
( |
| ) |
|
Perform the linear weighted fit without constant parameter.
◆ get_fit_data()
const fit_data& mygsl::linear_regression::get_fit_data |
( |
| ) |
const |
Return the result of the fit.
◆ init() [1/4]
void mygsl::linear_regression::init |
( |
const std::vector< datapoint > & |
p_ | ) |
|
Initialize from an array of datapoints (x,y,w) triplets.
◆ init() [2/4]
void mygsl::linear_regression::init |
( |
size_t |
npoints_, |
|
|
const double * |
x_, |
|
|
const double * |
y_, |
|
|
const double * |
w_ = 0 |
|
) |
| |
Initialize from plain arrays of x, y and optional w values.
◆ init() [3/4]
void mygsl::linear_regression::init |
( |
const std::vector< double > & |
x_, |
|
|
const std::vector< double > & |
y_, |
|
|
const std::vector< double > & |
w_ |
|
) |
| |
Initialize from vectors of x, y and w values.
◆ init() [4/4]
void mygsl::linear_regression::init |
( |
const std::vector< double > & |
x_, |
|
|
const std::vector< double > & |
y_ |
|
) |
| |
Construct from vectors of x and y values (no weights)
◆ is_initialized()
bool mygsl::linear_regression::is_initialized |
( |
| ) |
const |
Check initialization flag.
◆ reset()
void mygsl::linear_regression::reset |
( |
| ) |
|
◆ MINIMUM_NUMBER_OF_DATA_POINTS
const unsigned int mygsl::linear_regression::MINIMUM_NUMBER_OF_DATA_POINTS = 2 |
|
static |
Minimum number of data points to perform the linear regression fit.
The documentation for this class was generated from the following file: